API¶
Main functions¶
- 
class meshslice.meshslice_sph.MeshPlotSph(mesh, lat: Optional[float] = None, lon: Optional[float] = None, rotangle: float = 0.0, depth: Optional[float] = None, rotlat: Optional[float] = None, rotlon: Optional[float] = None, get_mean: bool = True, opacity: bool = False, meshname: str = 'RF', cmapname: str = 'seismic', cmapsym: bool = True, clim: Optional[List[float]] = None, debug: bool = True, outputdir: str = '.', use_ipyvtk: bool = False, figures_only: bool = False, test: bool = False, fmt: str = 'pdf')[source]¶
Utilities¶
- 
meshslice.utils.cart2geo.cart2geo(x: float, y: float, z: float) -> (<class 'float'>, <class 'float'>, <class 'float'>)[source]¶
- Computes Cartesian coordinates from geographical coordinates. - Parameters
- xfloat or numpy.ndarray or list
- Radius 
- yfloat or numpy.ndarray or list
- Latitude (-90, 90) 
- zfloat or numpy.ndarray or list
- Longitude (-180, 180) 
 
- Returns
- float or np.ndarray or list, float or np.ndarray or list, float or np.ndarray or list
- (r, theta, phi) 
 
 
- 
meshslice.utils.cart2sph.cart2sph(x: float, y: float, z: float) -> (<class 'float'>, <class 'float'>, <class 'float'>)[source]¶
- Computes Cartesian coordinates from geographical coordinates. - Parameters
- xfloat or numpy.ndarray or list
- Radius 
- yfloat or numpy.ndarray or list
- Latitude (-90, 90) 
- zfloat or numpy.ndarray or list
- Longitude (-180, 180) 
 
- Returns
- float or np.ndarray or list, float or np.ndarray or list, float or np.ndarray or list
- (r, theta, phi) 
 
 
- 
meshslice.utils.geo2cart.geo2cart(r: float, theta: float, phi: float) -> (<class 'float'>, <class 'float'>, <class 'float'>)[source]¶
- Computes Cartesian coordinates from geographical coordinates. - Parameters
- rfloat or numpy.ndarray or list
- Radius 
- thetafloat or numpy.ndarray or list
- Latitude (-90, 90) 
- phifloat or numpy.ndarray or list
- Longitude (-180, 180) 
 
- Returns
- float or np.ndarray or list, float or np.ndarray or list, float or np.ndarray or list
- (x, y, z) 
 
 
- 
meshslice.utils.map_axes.map_axes(proj: str = 'moll', central_longitude=0.0) → matplotlib.axes._axes.Axes[source]¶
- Creates matplotlib axes with map projection taken from cartopy. - Parameters
- proj: str, optional
- shortname for mapprojection ‘moll’, ‘carr’, by default “moll” 
 
- Returns
- plt.Axes
- Matplotlib axes with projection 
 
- Raises
- ValueError
- If non supported shortname for axes is given 
 
 - Notes - Author
- Lucas Sawade (lsawade@princeton.edu) 
- Last Modified
- 2021.01.13 20.30 
 - Examples - >>> from lwsspy import map_axes >>> map_axes() 
- 
meshslice.utils.plot_map.plot_map(fill=True, zorder=None, labelstopright: bool = True, labelsbottomleft: bool = True, borders: bool = True, rivers: bool = False, lakes: bool = False)[source]¶
- Plots map into existing axes. - Parameters
- fillbool, optional
- fills the continents in light gray, by default True 
- zorderint, optional
- zorder of the map, by default -10 
- projectioncartopy.crs.projection, optional
- projection to be used for the map. 
- labelstoprightbool, optional
- flag to turn on or off the ticks 
- labelsbottomleftbool, optional
- flag to turn on or off the ticks 
- bordersbool
- plot borders. Default True 
- riversbool
- plot rivers. Default False 
- lakesbool
- plot lakes. Default True 
 
- Returns
- matplotlib.pyplot.Axes
- Axes in which the map was plotted 
 
 - Notes - Author
- Lucas Sawade (lsawade@princeton.edu) 
- Last Modified
- 2020.01.07 16.30 
 
- 
meshslice.utils.rotation_matrix.rotation_matrix(axis, theta)[source]¶
- Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. 
- 
meshslice.utils.sph2cart.sph2cart(r: float, theta: float, phi: float) -> (<class 'float'>, <class 'float'>, <class 'float'>)[source]¶
- Computes Cartesian coordinates from geographical coordinates. - Parameters
- rfloat or numpy.ndarray or list
- Radius 
- thetafloat or numpy.ndarray or list
- Theta (0, pi) 
- phifloat or numpy.ndarray or list
- phi (0, 2*pi) 
 
- Returns
- float or np.ndarray or list, float or np.ndarray or list, float or np.ndarray or list
- (x, y, z) 
 
 
- 
class meshslice.utils.SphericalNN.SphericalNN(lat, lon)[source]¶
- Spherical nearest neighbour queries using scipy’s fast kd-tree implementation. - Notes - Authors
- Lucas Sawade (lsawade@princeton.edu) 
- Last Modified
- 2020.01.07 19.00 
- Attributes
- datanumpy.ndarray
- cartesian point data array [x,y,z] 
- kd_treescipy.spatial.cKDTree
- a KDTree used to query data 
 
 - Methods - query(qlat, qlon) - Query a set of latitudes and longitudes - query_pairs(maximum_distance) - Find pairs of points that are within a certain distance of each other - interp(data, qlat, qlon) - Use the kdtree to interpolate data corresponding to the points of the Kdtree onto a new set of points using nearest neighbor interpolation or weighted nearest neighbor interpolation (default). 
- 
meshslice.utils.updaterc.updaterc(rebuild=False)[source]¶
- Updates the rcParams to something generic that looks ok good out of the box. - Args: - rebuild (bool):
- Rebuilds fontcache incase it needs it. 
 - Last modified: Lucas Sawade, 2020.09.15 01.00 (lsawade@princeton.edu)